
JRISC Draft Feb7 2004
Motivation

The JRISC processor is an attempt to make the smallest and most flexible 32-bit RISC processor for the Altera ACEX
devices used on the C1 reconfigurable computer. The Verilog code is very Altera specific due to the limitations in the ACEX parts.
(In other words this wont synthesize well on Xilinx parts).

Block Diagram

Theory of Operation
 The JRISC processor differs from most pipelined RISC processors, because even from the beginning the goal was not
execution speed, but low FPGA logic cell usage. Altera ACEX parts don’t have large RAM blocks for caches, so the design will be
bound by external memory and any time multiplexed devices. In the C1’s case the memory is shared heavily with high-resolution
VGA frame buffer. The processor takes 7 clock cycles to execute one instruction, which is faster than the C1’s available memory
bandwidth.

State Flow

Cycle 1 Fetch opcode and store in r15, latch flags from r14.
Cycle 2 Latch B operand from register file and decode conditions.
Cycle 3 If conditions true then pass A operand to ALU, write ALU result to destination (none, address register or register

file) and if in load operation wait for memory access, then store memory data into register file.
Cycle 4 Latch r0 into B operand. If in store operation wait for memory access, then write data from register file.
Cycle 5 Write flags and current address to r14 if store flags field set in opcode.
Cycle 6 Latch B operand with sign bit [7] extended value from r15.
Cycle 7 Pass program counter (r13) to operand A and write result back to r13. Carry is set during address calculation so

opcode [7:0] = 0 will increment the program counter. Offset is signed and relative.

Register File

Register Description
0 This register must remain a constant value of 0. Use for several addressing modes and operations.
1 User
2 User
3 User
4 User
5 User
6 User
7 User
8 User
9 User
10 User
11 Bits [31:27] Reserved [26:0] IRQ Vector
12 Bits [31:27] Reserved [26:0] Software Stack
13 Bits [31:27] Reserved [26:0] Program Counter
14 Bit [31] Negative [30] Zero [29] Carry [28] Overflow [27] IRQ Enable [26:0] Last Address
15 Current Opcode Fetched. Modifying the [7:0] will change the offset that is calculated at end of the cycle (bad idea).

Negative Bit 31 of the ALU result.
Zero Set to 1 when ALU result is equal to 0.
Carry Carry out from the ALU or left shifter.
Overflow Detects addition of two signed binary numbers that overflow (i.e. two negative numbers may overflow)
IRQ Enable Enables IRQ’s when flag is set to 1.
Last address Address of the last address that was store with the store flags opcode field. This value is not valid after a store

operation.

Opcode Fields

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
ALU Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
Load Conditions 1 Store

Flags
01 ALU

Operation
Operand

A
Destination Operand

B
Relative Branch Offset

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
Store Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Source
Register

Operand
B

Relative Branch Offset

Conditions
0000 EQ (Equal) Z
0001 NE (Not Equal) ~Z
0010 CS (Carry Set) C
0011 CC (Carry Clear) ~C
0100 MI (MInus) N
0101 PL (PLus) ~N
0110 VS (oVerflow Set) V
0111 VC (oVerflow Clear) ~V
1000 HI (HIgher) C and ~Z
1001 LS (Lower or Same) ~C and Z
1010 GE (Greater or equal) N = V
1011 LT (Less Than) N = ~V
1100 GT (Greater Than) (N = V) and ~Z
1101 LE (Less or equal) (N = ~V) or Z
1110 AL (Always) True
1111 NV (Never) False

Store Result
0 Don't store ALU result
1 Store ALU result in register file

Store Flags
0 Don't update flags at end of execution or store current address.
1 Update flags at end of execution.

Opcodes
00 ALU Operation
01 Load Register
10 Store Registers
11 Reserved

ALU Functions
0000 AND
0001 OR
0010 XOR
0011 ADD + Carry
0100 AND Not B
0101 OR Not B
0110 XNOR

0111 SUB - Carry
1000 AND Shift Right
1001 OR Shift Right
1010 XOR Shift Right
1011 ADD + Carry Shift Right
1100 AND Extended B[7]*
1101 OR Extended B[7]*
1110 XOR Extended B[7]*
1111 ADD + Carry Extended B[7]*

Offset Branch
The relative location to jump after opcode is executed (only if condition is met)
00000000 = PC + 1
00000001 = PC + 2
11111111 = PC
11111110 = PC - 1

Code Examples:

And

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
ALU Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True True AND r1 r2 r3 000000000

Register 1 is “and-ed” with register 3, ALU result stored in register 2; flags/current address stored in r14 and program counter is
incremented

ADD

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
ALU Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True True ADD r1 r2 r3 000000000

Register 1 is “added” with register 3, ALU result stored in register 2, flags/current address stored in r14 and program counter is
incremented

Compare

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
ALU Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always False True SUB r1 Don’t care r3 000000000

Register 3 is “Subtracted” from register 1, flags/current address stored in r14 and program counter is incremented

Move

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
ALU Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True True OR r1 r2 r0 000000000

Moves register 1 to register 2. This operation can affect flags if needed.

Shift Left

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
ALU Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True True ADD r1 r2 r1 000000000

To save space in the ALU shift left was omitted an can be replaced with adding the same register with it’s self. Here we shift r1 left
one position, store the result and flags.

Conditional Branch

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
ALU Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 The
Condition

False False Don’t Care Don’t
Care

Don’t Care Don’t
Care

000000011

If condition is true then branch forward 5 addresses else fetch next opcode.

Branch Always

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
ALU Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always False False Don’t Care Don’t
Care

Don’t Care Don’t
Care

11111110

Always branch backwards 1 address.

Signed Operations

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
ALU Conditions Store

Result
Store
Flags

00 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True True AND r1 r2 r3 000000000

Register 1 is “and-ed” with register 3 sign extended (Bit [7] fills all bit locations from [31:7] and [6:0] is passed unchanged), ALU
result stored in register 2; flags/current address stored in r14 and program counter is incremented.

Load From Register Address

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
Load Conditions Store

Result
Store
Flags

01 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True False OR r1 r2 r0 000000000

Load memory value into r2 using r1 as the address pointer. Flags are not affected by load data, but from the address generation.

Load From ALU Result Address

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
Load Conditions Store

Result
Store
Flags

01 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True False ADD r1 r2 r3 000000000

Load memory value into r2 using (r1 + r3) as the address pointer. Flags are not affected by memory data, but from the address
generation. Any ALU function can be used to generate address. Carry is not passed to the ALU during loads operations.

Load Immediate

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
Load Conditions Store

Result
Store
Flags

01 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True False ADD Sign
Extended

R13 r2 r15 000000001

Loads memory value from next address, then fetches opcode 2 addresses forward. Flags are not affected by memory data, but from
the address generation. Carry is not passed to the ALU during Loads.

Note About Store Commands
You CAN’T return from a relative branch of a store opcode. The last address stored in r14 will be corrupted.

Store From Register Address

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
Store Conditions Store

Result
Store
Flags

10 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True False OR r1 r2 r0 000000000

Store memory value from r2 using r1 as the address pointer. Flags are not affected by stored data, but from the address generation.

Store From ALU Result Address

Bits 31:28 27 26 25:24 23:20 19:16 15:12 11:8 7:0
Store Conditions Store

Result
Store
Flags

10 ALU
Operation

Operand
A

Destination Operand
B

Relative Branch Offset

 Always True False ADD r1 r2 r3 000000000

Store memory value from r2 using (r1 + r3) as the address pointer. Flags are not affected by stored data, but from the address
generation. Any ALU function can be used to generate address. Carry is not passed to the ALU during loads operations.

Startup
The first operation startup code should do for safety is load immediate $00000000 into r0, then set stack, IRQ vectors and last enable
IRQ’s

Jumping Absolute
Jumping is executed by loading or moving a value into r13 (program counter) with an offset of $FF. The offset keeps the program
counter from being incremented.

Handling Subroutines

Notes:
Store Flags must be set in opcode that branches, so the last address register will be updated.
You CAN’T return from a store opcode. The last address register will be corrupt.

Entry:
The first opcode on branch entry must be store flags/last address (r14) to stack (r12 coding convention) or branch address will be lost.
Increment stack pointer and then start subroutine.

Exit:
Decrement stack pointer.
Load r14 with stack data.
Move r14 to r13 (program counter), then the processor will increment the program counter and return from subroutine.

Handling IRQ’s

Notes:
IRQ’s will only branch from opcodes that store flags/last address and not store operations.

Entry:

The first opcode on branch entry must be store flags/last address (r14) to stack (r12 coding convention) or branch address will be lost.
Increment stack pointer and then start subroutine.

Exit:
Decrement stack pointer.
Load r14 with stack data. (This will enable IRQ’s by setting the IRQ flag back to 1)
Move r14 to r13 (program counter), then the processor will increment the program counter and return from subroutine.

Useful Reading:

<Put some junk here>

